Reference Publication: Subrato Chandra , Danny Parker, David Beal, David Chasar, Eric Martin, Janet McIlvaine, Neil Moyer. Alleviating Moisture Problems in Hot, Humid Climate Housing. Position Paper for NSF Housing Research Agenda Workshop, UCF Feb. 12-14, 2004. |
Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. |
Alleviating Moisture Problems in Hot, Humid Climate Housing
Subrato
Chandra, Danny
Parker, David
Beal,
Dave Chasar, Eric Martin, Janet McIlvaine, Neil Moyer
Florida
Solar Energy Center
Introduction
The Southeastern U.S. experiences hot, humid conditions throughout the summer months and in Florida, one of the high growth states with large number of homes, these conditions can prevail throughout most of the year. As a result it is not uncommon to find extensive mold, soft drywall, buckled floors, damaged ceilings and other moisture problems in new and existing site built and manufactured homes. Since 1999, as a result of participation in the U.S. DOE funded Building America program, the authors have developed first hand experience and conducted research in these areas. This paper provides a brief summary of the state of the art and research needs for three areas - Manufactured (mobile) Homes, Unvented Attics and Slab-on-grade floors.
Manufactured (Mobile) Homes
State of the Art
A significant number of new manufactured (mobile) homes built
to the HUD Code and located in the hot, humid Southeast are
experiencing moisture problems. Soft wallboards, buckled floors,
damaged wood molding and extensive mold growth are the most
common symptoms. These problems do not respond to the standard
service and repair strategies for water intrusion.
At the request of six manufacturers, BAIHP researchers have investigated over 70 such problem homes between 1999 and 2003 to determine likely causes. One time blower door, duct tightness and pressure differential measurements were performed on all homes. Field data on ambient, crawlspace, belly (closed, insulated space between floor deck and crawl space) and house temperatures and RH were also collected in some cases. Recommendations and reports were prepared for the manufacturer’s service, production and design staff. Field repairs were performed in most of these homes by the manufacturer’s service team.
As documented (Moyer et. al., 2001) in the reports, generalized themes existed in the houses investigated:
Similar problems were found in the work done by the Manufactured Housing Research Alliance (MHRA, 2003) under funding from HUD/PATH.
Research
Needs
It could be argued that one can solve the moisture problems
in manufactured housing by taking steps to rectify all of
the above deficiencies. However, that may be costly and not
preferred by the manufacturers or the consumers.
For instance, several manufacturers are now producing homes with air tight duct systems with the joints and seams sealed with mastic. Although this helps to reduce the a prime driving force (negative pressure) it does not necessarily solve the floor buckling problem. High crawl space moisture levels caused by lack of ground cover and inadequate ventilation, belly board tears, small negative pressures and moisture susceptible flooring material can combine to cause floor buckling problems. At least one manufacturer incorporated FSEC recommendations of installing a vapor barrier on the ground, adequate return air paths from closed rooms and right sizing air conditioners. This manufacturer does not experience any moisture problem homes now despite having some homes with impermeable wall coverings and floor coverings. However other manufacturers have been reluctant to take these additional steps and continue to experience service calls for moisture damage.The following research will assist in advancing the state of the art for all housing, not just manufactured housing, built with crawl spaces:
1. Vented Crawl Spaces: Conduct experiments and develop models that better predict the crawl space moisture levels as a function of soil type, presence/absence of ground cover, , ground wetting from rain and irrigation, crawl space ventilation aperture levels and surface grading. The objective will be to quantitatively understand what amount of ventilation apertures and other parameters are needed to have the crawlspace moisture levels about the same as ambient moisture levels.
2. Unvented Crawl Spaces: Develop experimentally validated unvented crawl space designs that are able to successfully deal with initial construction moisture (before the crawlspace is sealed up) as well as flooding in addition to normal interior moisture generation. Research is underway at Advanced Energy Corporation (Davis et. al., 2002) and elsewhere on unvented crawl spaces for site built housing. This research needs to be examined for its applicability to manufactured homes and additional research conducted for manufactured homes if needed
Unvented Attics
State of the Art
The vast majority of homes are heated and cooled by ducts
installed in vented attics. In hot, humid climates, in some
homes, moisture in attic ventilation air can condense on the
out side of inadequately insulated ductwork and/or the attic
side of the unevenly insulated ceiling drywall when it is
overcooled by misdirected supply air at register boots or
other leak sites. This has caused moldy, soft or failed ceilings
in a few homes. Attic ventilation air creates the thermal
load on the duct system itself during both heating and cooling
seasons. In addition vented attics are dusty and can have
pests and pesticides which can contribute to poor indoor air
quality in the home.
Unvented attic construction, where the insulation is applied to the underside of the roof decking can solve the moisture and IAQ problems of vented attics. Dr. Joseph Lstiburek and his colleagues at Building Science Corporation have conducted significant work in this area (Ueno, 2003). In addition, since the ductwork is now within the thermal boundary, energy savings also result (Parker et. al., 2000).
Research
Needs
The unvented attic concept has been implemented in several
dozen new homes in hot, humid climates. Those with tile or
metal roofs seem to have no problems. Unvented attics with
shingle roofs have had some problems in some homes (high moisture
content in attic peaks, buckled shingles). These are generally
a result of solar driven moisture into the attic as has been
suggested and described by Lstiburek (2003) who has recommended
the use of a vapor retarder roofing paper to solve the problem.
However, some roofers are reluctant to use this slippery material.
Another
issue is how best to insulate at the underside of the roof
decking. Many have used vapor permeable foam insulation to
avoid the problems of attaching blanket or blown insulation
against gravity. Some have raised the issue of detecting roof
leakage points if a roof leak developed with foam insulation.
The research needs are to:
3. Unvented Attics: Conduct measurements in unvented attics with shingles to determine the attic moisture conditions as a function of roof slope, type of roofing paper, amount and type of coupling between house and attic, amount of duct leakage. Develop predictive models and design guidelines. Conduct research to determine how roof leaks are propagated through foam insulated roof decks and suggest design or application guidelines.
Slab-on-grade floors
State
of the art
The predominant majority of site built houses in hot, humid
climates are built with slab-on-grade floors. In much of Florida,
stucco walls are common and the stucco extends below the ground.
With lot lines shrinking and prevalence of lawn irrigation sprinklers, the sides of many homes are wet much of the time because of poor grading and excessive watering. (Figure 1)
Figure 1. Slab-on-grade floor detail (illustration courtesy of Dr. Joseph Lstiburek, Building Science Corp.) |
When this water drive toward the inside is present, it is common to find moldy areas at carpets near the baseboard or behind the baseboard
Another poorly understood phenomena is the heat transfer through the slab. If the temperature in the house is maintained above the ground temperature, then a tiled floor can significantly reduce the cooling need, especially in presence of a ceiling fan. Preliminary measurements both at the Florida Solar Energy Center (Parker et. al. 1998) and the Texas A&M University (Kootin-Sanwu et. al. 2000) indicate that ground slab heat transfer can be quite a bit larger than commonly computed in current generation building energy simulation software. This has the possibility of not only justifying more slab edge insulation in mixed climates to reduce space heating, but also may show that greater expanses of tile flooring in hot climates considerably reduces peak air conditioning needs due to beneficial earth-contact cooling. Since this phenomenon is poorly calculated in current building energy software, actual impacts are likely misrepresented.
Research Needs
4. Slab-on-grade floors (moisture): Document the extent of mold /moisture problems in slab-on-grade homes by instrumenting several such homes with different construction details in different soil types with different water management levels (eg gutters, sprinklers, drainage, etc.) Develop empirical and analytical models and field tested design guidelines.
5. Slab-on-grade floors (Heat Transfer): Conduct a series of experiments with different configurations of slab edge insulation with and without carpet and a comparison to a similar building with an insulated crawlspace. Develop appropriate earth contact heat transfer models. Also investigate measures to be undertaken to mitigate termite and insect infestation in the slab insulation, which is often cited as a secondary reason not to insulate slab-on-grade construction in hot and humid climates. Note that waterproof and pest proof insulation is likely to help in the moisture management area also.
Conclusions
Mold related claims are skyrocketing in Florida and other states. Durable and energy efficient buildings are key to sustainability and growing prosperity. The research identified in this paper is by no means comprehensive but it would help to advance better housing for the large numbers of residents of the growing Southeastern U.S.
Acknowledgement:
This work is sponsored, in large part, by the Building America program of the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Building Technologies Program under cooperative agreement number DE-FC36-99GO10478. The authors appreciate the encouragement and support from Mr. George James and Mr. Chris Early, DOE program managers in Washington, DC. They are grateful to FSEC colleagues Mr. Philip Fairey and Mr. Robin Vieira and Building America collegues Dr. Joseph Lstiburek, Mr. Armin Rudd, Mr. Brad Oberg and others for their many helpful suggestions and comments over the past several years.
References
Davis,
B., Warren B. et. al. (2002) “Crawl Space Project :
Preliminary results” Advanced Energy, 2002. http://www.advancedenergy.org/applied_building_sciences/knowledge_library/
crawl_spaces/field_test/2002/project_summary_report.pdf
Kootin-Sanwu, V., Kim, B., Haberl, J. 2000. “Comfort Conditions In A Habitat For Humanity House In Central Texas”, Proceedings of the Twelfth Symposium on Improving Building Systems in Hot and Humid Climates, Texas Building Energy Institute, San Antonio, Texas, (May), pp. 129-135.
Lstiburek, J. (2003) “Unvented Roofs, Hot-Humid Climates and Asphalt Roofing Shingles”, Building Science Corp. January, 2003. http://www.buildingscience.com/resources/roofs/unvented_roof.pdf
Manufactured Housing Research Alliance (MHRA) (2003) “ Minimizing Moisture Problems in Manufactured Homes Located in Hot, Humid Climates” September 4, 2003 . http://www.huduser.org/Publications/PDF/MoistureReportFinal.pdf
Moyer, N., Beal, D., Chasar, D., McIlvaine, J., Withers, C, & Chandra, S. (2001). “Moisture Problems in Manufactured Housing: Probable Causes and Cures.” ASHRAE - IAQ 2001 Conference Proceedings, San Francisco, CA. http://www.fsec.ucf.edu/bldg/baihp/pubs/moistprob/index.htm
Parker, D.S. et. al.(1998) See “Thermal Performance Monitoring” section in Field Evaluation of Efficient Building Technology with PV Power Production in New Florida Residential Housing, Nov. 1998, FSEC-CR-1044-98, Florida Solar Energy Center, FL. http://www.fsec.ucf.edu/bldg/pubs/cr1044/index.htm
Parker, D.S., J.K. Sonne, J.R. Sherwin, and N. Moyer ( 2000). "Comparative Evaluation of the Impact of Roofing Systems on Residential Cooling Energy Demand." Contract Report FSEC-CR-1220-00, Florida Solar Energy Center, Cocoa, FL. Nov. 2000 http://www.fsec.ucf.edu/bldg/pubs/coolroof/index.htm
Ueno, K. (2003) “Unvented Roof Summary Article”, Building Science Corp. Feb. 2003. http://www.buildingscience.com/resources/roofs/unvented_roof_summary_article.pdf